제 15 강좌: Vaccines

- 면역학은 Edward Jenner와 louis Pasteur의 Vaccination 실험들로부터 출발하여 발전해왔다.
- Vaccination은 질병예방을 위한 가장 경제적이고 효과적인 수단이라 할 수 있다.
- l) Smallpox (천연두)는 1977년 이후 거의 발병보고가 이루어지지 않고 있기에 WHO에서 천연두 박멸 선언을 하였다. 이는 Smallpox vaccine이 개발되었기 때문에 가능함.
- ii) 1990년 이후 polio의 감염도 보고되지 않고 있으므로 조만간 박멸을 선언할 예정이다.
- 현재까지 개발된 많은 vaccines들이 감염성 질병예방에 크나큰 기여를 하고 있지만 여전히 많은 Vaccines를 개발해야 한다; malaria, tuberculosis, AIDS etc.
- 현재까지 연구된 면역학적 및 분자생물학적 지식을 토대로 강력한 면역반응을 유도하기 위해 새로운 type의 vaccines를 개발하고 있다.

Active and passive Immunization

- 감염성 미생물에 대한 면역성은 두가지 형태로 획득할 수 있다; passive and active immunity
 - Passive immunity
- Natural maternal antibody
- Immune globulin
- Antitoxin
- Active immunity
- Natural infection
- Vaccines
 - . Attenuated organisms . inactivated organisms
 - . Purified microbial macro, olecules
 - . Multivalent complexes
- Toxoids

A) Passive Immunization

- 한 개체에서 유도된 immunity는 (주로 antibody) 다른 개체에 전달 될 수 있다.
- 산모의 태반을 통해 엄마의 면역기능을 태아에 전달하는 하는 것은 전형적인 passive immunization의 한 형태이다; diphtheria, tetanus, streptococci, rubella, mumps, poliovirus에 대한 immunity 전달
- Infant에게는 colostrum과 milk를 통해 전달된다.
- Passive immunization이 필요한 경우
 - 선천적, 면역결핍증 또는 B-cell defects로 인해 항체를 만들지 못하는 경우
 - 아주 감수성이 강한 사람이 어떤 병원체에 노출된 경우 (leukemia/measles)
 - Active immunization을 적용할 수 없을 정도로 급박한 경우
 - 위험한 toxin에 노출된 경우

Disease	Agent
Black widow spider bite	Horse antivenin
Botulism	Horse antitoxin
Diphtheria	Horse antitoxin
Hepatitis A and B	Pooled human immune gamma globulin
Measles	Pooled human immune gamma globulin
Rabies	Pooled human immune gamma globulin
Snake bite	Horse antivenin
Tetanus	Pooled human immune gamma globulin or horse antitoxin

B) Active Immunization

- Protective immunity와 immunologic memory를 유도함.
- Vaccine administration
- Active vaccination은 생후 2개월 후부터 실시한다.

Designing vaccines for active immunization

- Vaccine개발에 중요한 두가지 factors;
- 면역반응을 유도한다는 것이 중요한 것이 아니라 어떤 branch의 면역반응을 유도하느냐 가 중요: humoral vs. CMI
- Immunologic memory 유도
- 경우에 따라서는 memory뿐만 아니라 high level의 immunity를 유지시킬 필요 있음.
- ex) influenza virus; memory system이 작동되고 있는 과정에 이미 증상을 나타내므로 평소에 반복 면역으로 높은 면역 상태를 유지 시켜야 한다.

TABLE 18-4 CLASSIFICATION OF COMMON VACCINES FOR HUMANS

Disease or pathogen	Type of vaccine	
Whole organisms		
Bacterial cells		
Anthrax	Inactivated	
Cholera	Inactivated	
Pertussis*	Inactivated	
Plague	Inactivated	
Tuberculosis	Live attenuated BCG	
Typhoid	Live attenuated	
Viral particles		
Hepatitis A	Inactivated	
Influenza	Inactivated	
Measles	Live attenuated	
Mumps	Live attenuated	
Polio (Sabin)	Live attenuated	
Polio (Salk)	Inactivated	
Rabies	Inactivated	
Rotavirus	Live attenuated	
Rubella	Inactivated	
Varicella zoster (chickenpox)	Live attenuated	
Yellow fever	Live attenuated	
Purified macrome	olecules	
Toxoids		
Diphtheria	Inactivated exotoxin	
Tetanus	Inactivated exotoxin	
Capsular polysaccharides		
Haemophilus influenzae	Polysaccharide +	
type b	protein carrier	
Neissera meningitidis	Polysaccharide	
Streptococcus pneumoniae	23 distinct capsular polysaccharides	
Surface antigen		
Hepatitis B	Recombinant surface antigen (HbsAg)	

^{*}There is an now also an acellular pertussis vaccine consisting of toxoids and inactivated bacteria components.

Whole-Organism vaccines

- 현재 사용되고 있는 많은 vaccines들은 killed (inactivated) 아니면 attenuated (avirulent) bacterial cells 와 viral particles이다.

OMPARISON OF ATTENUATED (LIVE) ED (KILLED) VACCINES

Attenuated vaccine	Inactivated vaccine
Selection for avirulent organisms: virulent pathogen is grown under adverse culture conditions or prolonged passage of a virulent human pathogen through different hosts	Virulent pathogen is inactivated by chemicals or irradiation with γ-rays
Conorally requires only a single honster	Requires multiple boosters

[†]Bacillus Calmette-Guerin (BCG) is an avirulent strain of Mycobacterium bovis.

A) Attenuated viral or bacterial vaccines

- 병원균의 병원성과 독성을 제거시키나 그 균들이 host에 감염 (colonization)은 이루므로 host가 감염된 병원체에 대해 면역반응을 일으킴.
- Attenuation시키는 방법
 - 오랜 기간에 걸쳐 배양을 하면 돌연변이 때문에 attenuation됨 (고전적 방법)
- ex) **BCG** (Bacillus Calmette-Guerin)— an attenuated strain of *Mycobacterium bivis M. bovis*를 담즙 (bile)이 함유된 배지에서 13년을 계대배양 시키면 충분히 attenuated되므로 이를 tuberculosis vaccine으로 사용하고 있다.
 - 최근에는 분자 생물학적 기법으로 특정 유전자를 deletion시켜 제조함.

- Advantages

- Prolonged immune system exposure되기 때문에 높은 immunity와 memory cell들을 유도하게 된다. 따라서 multiple immunization과정이 필요없다.
 - Humoral immunity와 cellular immunity를 유도한다.
 - Mucosal immunity를 유도한다.

- Disadvantages

- Reversion to the virulent form (ex, OPV vaccine 1 case/ four million dose) (최근의 기법에서는 문제시되지 않음)
 - Contamination problems (virus vaccine의 경우)

B) Inactivated viral or bacterial vaccines

- Physically and chemically inactivates organisms
- 이때 중요하게 고려해야 할 사항은 surface antigen들의 epitope들을 잘 유지 시켜야 한다.
- 일반적으로 높은 immunity유도를 위해 booster immunization이 필요하다.
- Humoral immunity를 주로 유도한다.

Purified macromolecules as vaccines

- Whole organism을 사용한 live 나 attenuated vaccines들이 가지고 있는 잠재적 위험성을 극복하기 위해 병원체 유래의 purified macromolecules들을 vaccine으로 사용한다.

A) Polysaccharide vaccines

- Polysaccharide로 구성된 capsule은 antiphagocytic activity를 나타내어 virulence에 관여한다. 따라서 capsule에 대한 다량의 antibody가 존재하면 이들이 capsule을 coating하여 phagocytosis/complement reaction등이 잘 일어나게 하므로 이들 균의 감염을 막을 수있다.
- ex) *Streptococcus pneumoniae* (causing pneumoniae) 23-valent polysacchadire vaccine
- Polysaccharide vaccines의 한가지 단점은 이들은 TH-cell을 activation 시키지 못하고 B-cell을 activation시켜 항체생성을 하므로 인해 class switching, affinity maturation, memory cell production등을 잘 수행하지 못하는 약점이 있다.
- 위의 한계점을 해결하기 위해 polysaccharide vaccine에 protein antigen을 conjugation

시켜 cojugated vaccine을 제조함 (ex, *H. influenzae* type b (Hib) vaccine: type b capsular polysaccharide-tetanus toxoid conjugate vaccine)

B) Toxoid vaccines

- 병원균이 생산하는 exotoxin들을 정제하여 formaldehyde 처리하여 detoxification시킨 것을 toxoid라 한다.
- toxoid vaccine을 administration시키면 antitoxoid antibody가 생성되어 toxin을 neutralizing시킨다.
- 한가지 단점은 toxin을 다량으로 얻기가 쉽지 않다는 점이다.

C) Recombinant antigen vaccines

- recombinant DNA technology를 이용해 다양한 종류의 재 조합 항원을 얻을 수 있다.
- ex) hepatitis B virus (HBsAg)-HBsAg 유전자를 cloning하여 yeast cell에 transformation시켜 다량 발현케 하여 이를 정제하여 vaccine으로 사용하고있다.

Recombinant-vector vaccines

- Attenuated virus나 bacteria를 항원 운반체로 사 용하는 기법 (새로운 기법)
- Viral vector로 attenuated Vaccinia virus (smallpox 박 멸에 사용되었던 백신)를 주로 사용함. Attenuated vaccinia virus의 유전자들중 host에서 replication과 infection에는 영향을 미치지 않는 유전자에 항원 DNA를 insertion시켜 사용함.
- Bacterial vector로는 attenuated *Salmonella*등을 사용함. Plasmid에 항원 유전자를 cloning하여 transformation하여 제조함.

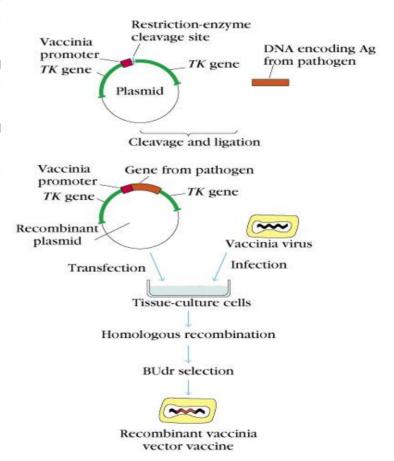
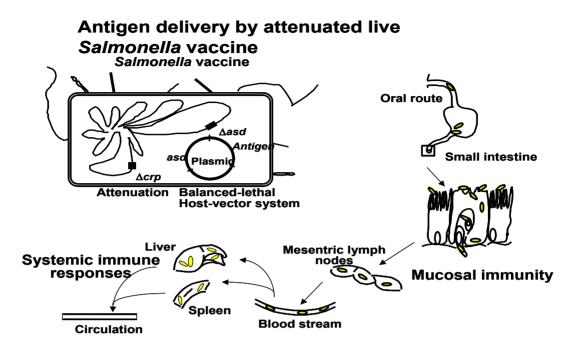



그림: Production of vaccinia vector vaccine

DNA vaccines

- Antigenic protein의 유전자를 plasmid에 cloning하여 이를 직접 개체에 injection시켜 host cell에서 항원을 발현케 하여 이에 대한 면역반응을 유도함.
- 항원을 정제하고 modify할 필요가 없고, 높은 면역성을 유도하고, 항원이 prolonged expression하는 등의 장점을 지니므로 현재까지 연구된 결과들을 종합 해 볼 때 아주 potential을 가지고 있다.
- Plasmid DNA를 microscopic gold-bead particle로 coating하여 "gene gun"을 사용하여 injection 한다.

Synthetic peptide vaccines

- Bioinformatical analyses의 결과를 바탕으로 인위적으로 small peptide를 합성하여 vaccine으로 활용함.
- 질병 예방을 위한 Vaccine으로서 보다는 immunological mechanism연구에 많이 사용됨.

Multivalent subunit vaccines

- synthetic peptide vaccine이나 recombinant vaccine들은 poor immunogenicity를 가지 므로 이들의 면역성을 높이기 위해 immunodominant B-cell and T-cell epitopes를 연결 시켜 사용함.
- Protein micells, liposomes, immunostimulating complexes (ISCOMs)를 만들어 사용함.

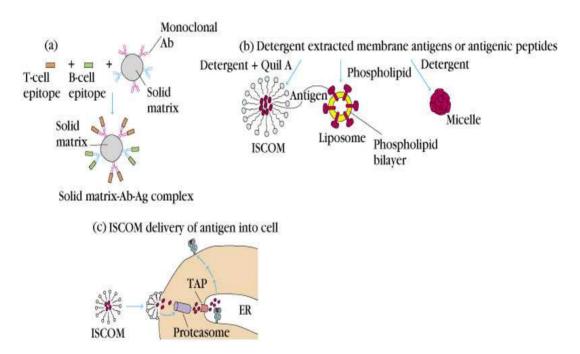


그림: Multivalent subunit vaccines